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Abstract 
 

Inline inspection data from several runs spanning many years is available for individual pipeline 

segments, but compilation of this data into a comprehensive picture of pipeline integrity 

necessarily relies on computational tools. A critical advantage of modern data storage, analysis 

and visualization techniques is the relative ease of performing statistical assessments of 

integrity operations. Data from a single client of OneBridge Solutions Inc, Cognitive Integrity 

Management (“CIM”) solution may comprise over 1,000 in-line inspection (ILI) runs, hundreds 

of pipe segments, several million aligned anomalies, and thousands of repair records. Automated 

alignment of ILI data allows a single physical anomaly to be reliably tracked through many years 

of repeated measurements of growth and correlated repair records which also factor in PODS 

asset data. 

 

We present a study of cases where ILI anomaly measurements warranted a dig operation in 

which repair actions were either performed or found to be unnecessary. The fraction of dig 

operations leading to a productive repair varies with the condition triggering the dig and 

discretionary choices about dig condition parameters. We explore the relationship between these 

parameters, ILI measurements, dig-to-repair ratios and the impact to operational expenditures. 

 

 

Introduction 

 
Cognitive Integrity Management (“CIM”) is an advanced pipeline integrity management end-

to-end SaaS application for operators world-wide. It has comprehensive functionality to 

optimize and provide assessment planning and tracking; analyses of data integrity for 

regulatory compliance; dig management, real-time audit-readiness; instant business 

intelligence; and integration with other enterprise systems.  

 

This paper will explore methodologies around how business intelligence is derived from dig 

operations and productive repair efforts. In partnership with a client, when trying to identify 

process improvements possible from the current workflow, we found an opportunity to 

critically examine the proportion of digs that led to a productive repair as a part of the 

integrity management program (IMP). In the industry this calculation is referred to as the 

dig-to-repair ratio, however, for the purpose of this study we refer to it as the repair fraction. 

Digs and repairs have the greatest impact on business optimization as they are the largest 

cost center of integrity operations. Critically, CIM provides pit-to-pit growth information for 

every anomaly using the full set of historical ILI data and allows linking this with the repair 

records dataset. The client provided the expertise to understand the IMP dig conditions, 

including regulatory conditions as well as those defined by the client’s best practices. 

 

 

 

 

 

 

Methodology 
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For the purpose of analysis, a historical repair dataset provided by one of the clients of CIM 

is analysed. The dataset contains records from 1,074 ILI runs spanning a time period from 

1991 to 2017 on pipelines with installation dates ranging from 1920 to 2016. More than 23,000 

digs were performed over a period from 1959 to 2019 which translates to 171 miles of pipeline 

excavation. Table 1 shows the three main categories of anomalies present in the dataset. 
 

Table 1. Total numbers for the main anomaly categories in the dataset 

 
Anomaly category Count 

Metal loss 14,533 

Dents 5,774 

Cracks 2,083 

 

From the dig records we determine whether a productive repair was performed or whether 

the pipe was simply recoated without additional action taken. The ratio of digs with 

productive repair to the total number of digs is defined as the repair fraction and is the metric 

for dig performance that we consider in this paper. One of the core advantages of CIM is 

automatic alignment of anomalies in all historical ILI records and the calculation of pit-to-pit 

growth based on those measurements. For each anomaly that is the focus of a dig record, we 

have access to the ILI measurements and this growth calculation. 

 

The repair fraction varies considerably when calculated for subsets of the full data set. There 

are several reasons a dig may not lead to a productive repair, including a broad category of 

analysis errors including mis-locating physical anomalies based on ILI records, targeting 

anomalies that have already been mitigated, and inability to include all available data due to 

computational limitations. These analysis errors can be reduced by better computational and 

data management tools. 

 

Imperfect information from the ILI, mostly due to tool tolerances, means that the true threat 

from an anomaly is only fully known when the pipe is exposed and measured in-situ. 

Relatedly, proper risk management entails digging anomalies that are unlikely to be 

problematic in order to mitigate the few that require repair. Risk-management strategy 

development can benefit from analysis of the factors that are associated with a high repair 

fraction. 

 

Results 
 

The overall effectiveness of a dig program can be assessed. For example, Figure 1 shows 

historical performance across all repair years. While there is some variation, the repair 

fraction is mostly stable between 40-60% of digs. 
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Figure 1. Repair fraction grouped by repair year . 

Condition monitoring involves finding anomalies that require remediation based on 

regulator-established conditions as well as those that require attention based on operator best 

practices. Many conditions are based on anomaly depth or interactions between anomalies 

and pipe features. Correlation of ILI tally data and CIM-calculated alignment and growth 

data with the repair dataset allows us to evaluate the repair fraction against those variables. 

For example, Figure 2 illustrates that digs for deeper corrosion anomalies are more likely to 

lead to a repair.  

 

 
Figure 2. Repair fraction shown as a function of corrosion depth as measured by ILI tools. 

In the following section, we will describe a consistent analysis approach and devise changes 

to a condition monitoring program when a large and diverse repair dataset is available. 
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Optimization of the repair fraction 
 

By collecting data about the integrity management and decision-making processes, it becomes 

possible to measure the effects of specific factors on the repair ratio and to identify 

opportunities for improvement. 
 

 
Figure 3. Repair fraction plotted across different conditions used in a dig program. The conditions are sorted in the order of 

increasing repair fraction.  

A condition monitoring program may include more than a hundred conditions for digging and 

potentially repairing an anomaly. The repair fraction is shown in Figure 3 for well-

represented conditions with at least 200 digs. The real conditions in the plot are encoded with 

numbers and ordered by increasing repair fraction. The description of all conditions can be 

found in Table A of the Appendix. 

 

For this section, we consider Condition 4 for an in-depth analysis. Condition 4 is defined as 

metal loss anomalies grown to exceed depth and/or pressure criteria per reassessment interval 

process and have an overall repair fraction of 44%. We present a scheme to use additional 

anomaly depth and growth criteria to reduce the number of digs that do not lead to a repair. 

The scheme is generalizable to other dig conditions. 

 

Figure 4 shows that the ratio is not distributed evenly among different values of the metal 

loss depth and the repair fraction increases with increasing depth. The analysis in this paper 

can be applied when the repair fraction varies with other anomaly parameters such as 

corrosion length and width, but we consider only metal loss depth here. 

 

For Condition 4, one could add an extra criterion requiring metal loss depth > 20%, excluding 

the first bin in Figure 4. In absolute numbers, this means performing 51 fewer digs at the 
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cost of not making 3 repairs. Of course, higher precision in selecting the depth threshold is 

limited only by the statistical power of this subset of the repair dataset.  

 

Moreover, with this idea in mind, it is possible to do a fine scan of the threshold. The scan is 

done by going over metal loss depth values between 0% to 30% in steps of 1%. There is no 

technical difficulty to perform a full range scan up to 100%. However, it would be impractical 

to consider higher values of metal loss threshold since it becomes too risky to exclude any digs 

or repairs. 

 

Figure 5a shows the number of digs and repairs that would have been excluded by a metal 

loss depth threshold criterion. The orange points show how many repairs are excluded from 

the dataset as they fall below the depth limit. The blue points represent the number of 

excluded digs. The repair fraction for the digs that would be performed even with the 

additional criterion is shown in green. Because higher-depth anomalies are more likely to 

require a repair during a dig operation, this fraction increases with an increasing depth 

Figure 4. Condition 4 repair fraction divided into bins of ILI measured metal loss. The integrated repair fraction ratio is 44.1% 

 

Figure 5. Results of the scan for the optimal metal loss depth. Left image (a) shows how many digs and repairs are 

excluded from consideration as the threshold moves along the horizontal axis. Right image (b) shows the change in 

the number of the digs and repairs as the threshold moves. In both images, the green line (and the right axes 

associated with it) shows the repair fraction for the remaining data above the threshold, and the red line indicates 

the threshold value discussed in the text. 
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threshold. Operators would select an optimal depth threshold compromising the number of 

digs that do not lead to repair against the small fraction of digs that do warrant a repair. 

 

Detailed examination of the effect on repair fraction of an additional criterion allows “critical” 

values of the criterion to be identified, where there is a large change in the repair fraction. 

Selection of the specific depth criterion requires balancing the cost of digs without repair and 

the risk mitigation from the digs that do lead to a repair, and this process is informed by the 

value of the repair fraction. For example, a depth criterion of 20% excludes 51 digs including 

only 3 digs with repair. Increasing the depth criterion to 21% excludes a total of 82 digs and 

only 8 digs with repair. While this analysis considers only digs for Condition 4, accounting for 

5% of the repair digs in this dataset, a similar optimization process can be applied to the other 

dig condition categories. In Figure 5, we see that the repair fraction has a step increase of 1-

2% when a depth threshold around 20% is applied. 
 

Inclusion of pit-to-pit anomaly growth 
 

A large dataset with multiple dimensions gives even more opportunities for optimization 

studies. In addition to checking dependence on the metal loss depth done above, one can also 

look at the pit-to-pit growth and other data dimensions.  

 

For a given metal loss depth criterion, an additional growth criterion retains the digs with 

repair while excluding digs that do not lead to repair. This process is shown in Figure 6b for 

the fixed depth criterion of 20%. In Figure 6a, the number of digs excluded by a combined 

criterion of a depth threshold and a growth threshold is shown in purple. This criterion avoids 

exclusion of any digs that did lead to repair, thus leaving the risk profile unchanged. 

 

This process could also be fine-tuned with a scan of possible thresholds in order to find the 

best possible optimization under extra conditions of choice. Concretely, a depth criterion of 

20% or greater and a requirement of any positive growth excludes 8 digs while retaining all 

digs that led to a repair. 
 

 

Figure 6. Left image (a) is Figure 5a with an added optimization results over pit-to-pit growth. For every value of 

metal loss limit, an extra scan is performed over the growth variable while requiring that the number of excluded 

repairs is zero. The purple curve shows the numbers of digs not leading to repair excluded by a combination growth 

and depth criterion that represent the maximum values found at a given metal loss threshold. Right image (b) 

shows an example of one of the scans corresponding to the metal loss fixed value of 20% 
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By adapting the selection criteria for these conditions, and by introducing additional datasets 

such as an advanced growth model based on pit-to-pit anomaly alignment there is an 

opportunity to perform fewer unproductive digs. Operators can more efficiently allocate 

resources towards digs that are most likely to lead to productive repairs while balancing cost-

efficiency and risk. 

 

Many conditions depend on values measured in a single ILI run. Optimization of their 

performance can have a large impact on the overall cost effectiveness of a dig program as it 

has been illustrated above. In the next section, we examine how the repair fraction can be 

used to evaluate growth models, including the CIM-alignment based pit-to-pit growth 

calculation. 
 

 

 

Repair fraction under different growth model scenarios 
 

In Figure 7, we calculate the repair fraction for different selections of corrosion anomaly 

growth using two different models: the pit-to-pit growth model based on CIM anomaly 

alignment and a half-life growth model based on pipe installation date. 

 

 
Anomalies with higher growth rates should merit a repair more often than those with low 

growth rates. We see that the pit-to-pit growth model does exhibit this trend, but the half-life 

based model shows a flat or negative correlation between repair fraction and anomaly growth. 

This indicates that the half-life model does not correctly indicate the anomalies that are 

riskiest or most in need of repair. 
 

Future Work 
 

This analysis can be applied to additional datasets as they become available. A unified data 

collection and analysis framework allows for easy addition of new datasets. The correlation 

Figure 7. Left plot (a): Repair fraction as a function of the pit-to-pit growth. Right plot (b): Repair fraction as a function 

of the growth based on the half-life calculation.    
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between a parameter and the repair fraction indicates how useful the parameter is for 

determining the riskiest anomalies. Pipe environmental data, pipe coating, close interval 

survey data are examples of datasets where such parameters as soil acidity (humidity) or 

cathodic protection current have potential to improve optimization.  

 

Beyond the addition of diverse datasets, it is important to note that a significant increase in 

the volume of data would allow the development of a predictive model, in contrast to the post-

hoc analysis in this paper. A larger parameter space and total data volume is necessary for 

data-validated models that predict dig outcomes and the repair fraction with a satisfactory 

level of statistical accuracy. 

 
 

Conclusion 
 

This analysis demonstrates the correlation between positive repair results and more 

advanced growth models based on a comprehensive picture of historical inline inspection data 

and pit-to-pit anomaly alignment. The repair fraction can be a valuable tool to assess the 

effectiveness of additional datasets or new methods of analysis, and to compare the relative 

performance of alternate methods of growth forecasting and criteria for dig selection. 

 

The study suggests that new tools and methodologies made available through advances in 

data science and machine learning allow clients to tune their IMP and de-risk operations. 

With a structured approach to integrity decision-making, more rigorous collection and 

management of integrity data, and the use of modern tools which leverage the computational 

power of the cloud, there is significant opportunity for deeper analysis and inspection of the 

integrity management program. The types of analysis presented here can guide operators 

toward a more effective integrity program and to reduce overall risk by improving the 

allocation of dig program funds. 
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Appendix 
 

Table A. Description of the real conditions shown in Figure 3 

 
Condition 

number 
Condition description 

Type of 

condition 

1 Any change since the previous assessment 
company best 

practice 

2 
Dents located on the pipeline that have any indication of metal loss not meeting 

immediate/priority conditions 

company best 

practice 

3 
Predicted metal loss greater than 50% of nominal wall that is in an area that could 

affect a girth weld 

regulator-

established 

4 
Metal loss growth anomalies: metal loss anomalies grown to exceed depth and/or 

pressure criteria per reassessment interval process 

company best 

practice 

5 
Dents located on the bottom of the pipeline with a depth greater than 6% of nominal 

pipe diameter, and greater than 0.25" for NPS 4 and smaller pipe 

company best 

practice 

6 

Dents located on the top of pipe (above 4 & 8 o'clock) with a dent depth greater than 

2% of pipe diameter (and greater than .025 inches for pipes less than 12-inch in 

nominal pipe size) 

regulator-

established 

7 
Anomalies that are in the judgment of the person designated by the operator to 

evaluate the assessment results 

company best 

practice 

8 
Historical correlation/verification features - previously evaluated and/or repaired 

metal loss or dent anomalies that can be correlated to the current tool run. 

company best 

practice 

9 Features required for validation of tool performance 
company best 

practice 

10 
Laminations (field evaluation are not required if a 1.25 hydrostatic test has been 

previously performed) 

company best 

practice 

11 
Dents located on the bottom of pipe (below 8 and 4 o'clock) that has any indication of 

metal loss, cracking, or a stress riser 

regulator-

established 

12 

Dents located on the top of pipe (above 4 & 8 o'clock) with a dent depth greater than 

3% of nominal pipe diameter (or greater than .25 inches for pipe less than 12-inch in 

nominal pipe size) 

regulator-

established 

13  Metal loss of or along the long seam weld 
company best 

practice 

14 
Dents located on the top of pipe (above 4 and 8 o'clock) that has an indication of metal 

loss 

regulator-

established 

15 
Predicted metal loss greater than 50% of nominal wall that is located at a crossing of 

another pipeline 

regulator-

established 

16 
Safe operating pressure that is less than current established MOP at anomaly 

location 

regulator-

established 

17 Corrosion of or along a longitudinal seam weld 
regulator-

established 

18 
Dents located on the pipe (above 4 and 8 o'clock) that has any indication of metal loss 

and MOP is greater than or equal to 40% SMYS. 

company best 

practice 

19 Metal loss greater than 80% 
company best 

practice 

20 Metal loss greater than 80% of nominal wall 
regulator-

established 

21 Top side dents with depth greater than 6% 
company best 

practice 

22 Metal loss features where SOP pressure less than MOP at the anomaly location 
company best 

practice 

23 
Stress corrosion cracks (crack-field calls by the ILI Vendor with depths equal or less 

than 80% of the nominal wall thickness.) 

regulator-

established 

24 
Crack fatigue remaining half-life anomalies: crack anomalies grown to exceed depth 

and/or pressure criteria per API-579 or log secant method. 

company best 

practice 

25 

Stress corrosion cracks (crack-field calls by the ILI Vendor with depths equal or less 

than 80% of the nominal wall thickness or with a calculated predicted burst pressure 

less than MOP at the anomaly location) 

company best 

practice 

 


